Continuous Speech Recognition Using Segmental Neural Nets

نویسندگان

  • Steve Austin
  • John Makhoul
  • Richard M. Schwartz
  • George Zavaliagkos
چکیده

We present the concept of a "Segmental Neural Net" (SNN) for phonetic modeling in continuous speech recognition. The SNN takes as input all the frames of a phonetic segment and gives as output an estimate of the probability of each of the phonemes, given the input segment. By taking into account all the frames of a phonetic segment simultaneously, the SNN overcomes the wellknown conditional-independence limitation of hidden Markov models (HMM). However, the problem of automatic segmentation with neural nets is a formidable computing task compared to HMMs. Therefore, to take advantage of the training and decoding speed of HMMs, we have developed a novel hybrid SNN/HMM system that combines the advantages of both types of approaches. In this hybrid system, use is made of the N-best paradigm to generate likely phonetic segmentations, which are then scored by the SNN. The HMM and SNN scores are then combined to optimize performance. In this manner, the recognition accuracy is guaranteed to be no worse than the HMM system alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving State-of-the-Art Continuous Speech Recognition Systems Using the N-Best Paradigm with Neural Networks

In an effort to advance the state of the art in continuous speech recognition employing hidden Markov models (HMM), Segmental Neural Nets (SNN) were introduced recently to ameliorate the wellknown limitations of HMMs, namely, the conditional-independence limitation and the relative difficulty with which HMMs can handle segmental features. We describe a hybrid SNN/I-IMM system that combines the ...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Modular Construction of Time-Delay Neural Networks for Speech Recognition

Several strategies are described that overcome limitations of basic network models as steps towards the design of large connectionist speech recognition systems. The two major areas of concern are the problem of time and the problem of scaling. Speech signals continuously vary over time and encode and transmit enormous amounts of human knowledge. To decode these signals, neural networks must be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991